Personalized Paper Recommendation Based on User Historical Behavior

نویسندگان

  • Yuan Wang
  • Jie Liu
  • XingLiang Dong
  • Tianbi Liu
  • YaLou Huang
چکیده

With the increasing of the amount of the scientific papers, it is very important and difficult for paper-sharing platforms to recommend related papers accurately for users. This paper tackles the problem by proposing a method that models user historical behavior. Through collecting the operations on scientific papers of online users and carrying on the detailed analysis, we build preference model for each user. The personalized recommendation model is constructed based on contentbased filtering model and statistical language model.. Experimental results show that users’ historical behavior plays an important role in user preference modeling and the proposed method improves the final predication performance in the field of technical papers recommendation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective personalized recommendation based on time-framed navigation clustering and association mining

Personalized recommendation by predicting user-browsing behavior using association-mining technology has gained much attention in web personalization research area. However, the resulting association patterns did not perform well in prediction of future browsing patterns due to the low matching rate of the resulting rules and users’ browsing behavior. This research proposes a new personalized r...

متن کامل

Ontology-based Approach for Mobile Personalized Recommendation

Mobile devices are in a widespread use today. Restricted by the features of mobile devices, such as mobility, low communication bandwidth, small capacity of memory, limited power and inconvenient interaction, mobile services are required to recommend items adapting to the user need and location. Much existing research on recommendations ignores semantic information of user dynamic historical pr...

متن کامل

A Pagerank-based Collaborative Filtering Recommendation Approach in Digital Libraries

Original scientific paper In the current era of big data, the explosive growth of digital resources in Digital Libraries (DLs) has led to the serious information overload problem. This trend demands personalized recommendation approaches to provide DL users with digital resources specific to their individual needs. In this paper we present a personalized digital resource recommendation approach...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012